model = AutoAdapterModel.from_pretrained("bert-base-uncased") model.load_adapter("AdapterHub/bert-base-uncased-pf-winogrande", source="hf")
AdapterHub/bert-base-uncased-pf-winogrande
for bert-base-uncasedAn adapter for the bert-base-uncased
model that was trained on the comsense/winogrande dataset and includes a prediction head for multiple choice.
This adapter was created for usage with the adapter-transformers library.
First, install adapter-transformers
:
pip install -U adapter-transformers
Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More
Now, the adapter can be loaded and activated like this:
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-winogrande", source="hf")
model.active_adapters = adapter_name
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found here.
Refer to the paper for more information on results.
If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
{ "adapter_residual_before_ln": false, "cross_adapter": false, "inv_adapter": null, "inv_adapter_reduction_factor": null, "leave_out": [], "ln_after": false, "ln_before": false, "mh_adapter": false, "non_linearity": "relu", "original_ln_after": true, "original_ln_before": true, "output_adapter": true, "reduction_factor": 16, "residual_before_ln": true }
@article{sakaguchi2019winogrande, title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale}, author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin}, journal={arXiv preprint arXiv:1907.10641}, year={2019} }