model = AutoAdapterModel.from_pretrained("facebook/bart-base") model.load_adapter("AdapterHub/narrativeqa", source="hf")
hSterz/narrativeqa
for facebook/bart-baseAn adapter for the facebook/bart-base
model that was trained on the qa/narrativeqa dataset.
This adapter was created for usage with the adapter-transformers library.
First, install adapter-transformers
:
pip install -U adapter-transformers
Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More
Now, the adapter can be loaded and activated like this:
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("facebook/bart-base")
adapter_name = model.load_adapter("hSterz/narrativeqa", source="hf", set_active=True)
{ "adapter_residual_before_ln": false, "cross_adapter": false, "inv_adapter": null, "inv_adapter_reduction_factor": null, "leave_out": [], "ln_after": false, "ln_before": false, "mh_adapter": false, "non_linearity": "relu", "original_ln_after": true, "original_ln_before": true, "output_adapter": true, "reduction_factor": 16, "residual_before_ln": true }
@article{narrativeqa, author = {Tom\'a\v s Ko\v cisk\'y and Jonathan Schwarz and Phil Blunsom and Chris Dyer and Karl Moritz Hermann and G\'abor Melis and Edward Grefenstette}, title = {The {NarrativeQA} Reading Comprehension Challenge}, journal = {Transactions of the Association for Computational Linguistics}, url = {https://TBD}, volume = {TBD}, year = {2018}, pages = {TBD}, }