View on huggingface.co

model = AutoModelWithHeads.from_pretrained("roberta-base")
model.load_adapter("AdapterHub/roberta-base-pf-fce_error_detection", source="hf")

Description

Adapter AdapterHub/roberta-base-pf-fce_error_detection for roberta-base

An adapter for the roberta-base model that was trained on the ged/fce dataset and includes a prediction head for tagging.

This adapter was created for usage with the adapter-transformers library.

Usage

First, install adapter-transformers:

pip install -U adapter-transformers

Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More

Now, the adapter can be loaded and activated like this:

from transformers import AutoModelWithHeads

model = AutoModelWithHeads.from_pretrained("roberta-base")
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-fce_error_detection", source="hf")
model.active_adapters = adapter_name

Architecture & Training

The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found here.

Evaluation results

Refer to the paper for more information on results.

Citation

If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":

@inproceedings{poth-etal-2021-what-to-pre-train-on,
    title={What to Pre-Train on? Efficient Intermediate Task Selection},
    author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2104.08247",
    pages = "to appear",
}

Properties

Pre-trained model
roberta-base
Adapter type
Prediction Head
  Yes
Task
Grammatical Error Detection

Architecture

{
  "adapter_residual_before_ln": false,
  "cross_adapter": false,
  "inv_adapter": null,
  "inv_adapter_reduction_factor": null,
  "leave_out": [],
  "ln_after": false,
  "ln_before": false,
  "mh_adapter": false,
  "non_linearity": "relu",
  "original_ln_after": true,
  "original_ln_before": true,
  "output_adapter": true,
  "reduction_factor": 16,
  "residual_before_ln": true
}

Citations

Task
@inproceedings{reiCompositionalSequenceLabeling2016,
  title = {Compositional Sequence Labeling Models for Error Detection in Learner Writing},
  booktitle = {Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, {{ACL}} 2016, August 7-12, 2016, Berlin, Germany, Volume 1: {{Long}} Papers},
  author = {Rei, Marek and Yannakoudakis, Helen},
  year = {2016},
  publisher = {{The Association for Computer Linguistics}},
  doi = {10.18653/v1/p16-1112},
  bibsource = {dblp computer science bibliography, https://dblp.org},
  biburl = {https://dblp.org/rec/conf/acl/ReiY16.bib},
  timestamp = {Sat, 30 May 2020 20:02:26 +0200}
}