model = AutoAdapterModel.from_pretrained("bert-base-uncased")
model.load_adapter("domadapter/joint_dt_slate_travel", source="hf")
domadapter/joint_dt_slate_travel for bert-base-uncasedAn adapter for the bert-base-uncased model that was trained on the nli/multinli dataset and includes a prediction head for classification.
This adapter was created for usage with the adapter-transformers library.
First, install adapter-transformers:
pip install -U adapter-transformers
Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More
Now, the adapter can be loaded and activated like this:
from transformers import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("domadapter/joint_dt_slate_travel", source="hf", set_active=True)
{
"adapter_residual_before_ln": false,
"cross_adapter": false,
"factorized_phm_W": true,
"factorized_phm_rule": false,
"hypercomplex_nonlinearity": "glorot-uniform",
"init_weights": "bert",
"inv_adapter": null,
"inv_adapter_reduction_factor": null,
"is_parallel": false,
"learn_phm": true,
"leave_out": [],
"ln_after": false,
"ln_before": false,
"mh_adapter": false,
"non_linearity": "relu",
"original_ln_after": true,
"original_ln_before": true,
"output_adapter": true,
"phm_bias": true,
"phm_c_init": "normal",
"phm_dim": 4,
"phm_init_range": 0.0001,
"phm_layer": false,
"phm_rank": 1,
"reduction_factor": 16,
"residual_before_ln": true,
"scaling": 1.0,
"shared_W_phm": false,
"shared_phm_rule": true,
"use_gating": false
}
@misc{williams2017broadcoverage,
title={A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference},
author={Adina Williams and Nikita Nangia and Samuel R. Bowman},
year={2017},
eprint={1704.05426},
archivePrefix={arXiv},
primaryClass={cs.CL}
}