model = AutoAdapterModel.from_pretrained("bert-base-uncased")
config = AdapterConfig.load("pfeiffer")
model.load_adapter("ner/conll2003@ukp", config=config)
{
"ln_after": false,
"ln_before": false,
"mh_adapter": false,
"output_adapter": true,
"adapter_residual_before_ln": false,
"non_linearity": null,
"original_ln_after": true,
"original_ln_before": true,
"reduction_factor": null,
"residual_before_ln": true
}
| Identifier | Comment | Score | Download |
|---|---|---|---|
| NER DEFAULT |
@misc{pfeiffer2020adapterfusion,
title={AdapterFusion: Non-Destructive Task Composition for Transfer Learning},
author={Jonas Pfeiffer and Aishwarya Kamath and Andreas Rücklé and Kyunghyun Cho and Iryna Gurevych},
year={2020},
eprint={2005.00247},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{sang2003introduction,
title={Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition},
author={Sang, Erik F and De Meulder, Fien},
journal={arXiv preprint cs/0306050},
year={2003}
}