Edit on GitHub

model = AutoAdapterModel.from_pretrained("bert-base-uncased")
config = AdapterConfig.load("pfeiffer")
model.load_adapter("nli/sick@ukp", config=config)

Description

Pfeiffer Adapter trained on SICK.

Properties

Pre-trained model
bert-base-uncased
Adapter type
Prediction Head
  No
Task
Natural Language Inference
Dataset

Architecture

Name
pfeiffer
Non-linearity
relu
Reduction factor
16
{
  "ln_after": false,
  "ln_before": false,
  "mh_adapter": false,
  "output_adapter": true,
  "adapter_residual_before_ln": false,
  "non_linearity": null,
  "original_ln_after": true,
  "original_ln_before": true,
  "reduction_factor": null,
  "residual_before_ln": true
}

Author

  Name
Jonas Pfeiffer
  GitHub
  Twitter

Versions

Identifier Comment Score Download
AdapterFusion DEFAULT

Citations

Adapter
@article{Pfeiffer2020AdapterFusion,
author = {Pfeiffer, Jonas and Kamath, Aishwarya and R{\"{u}}ckl{\'{e}}, Andreas and Cho, Kyunghyun and Gurevych, Iryna},
journal = {arXiv preprint},
title = {{AdapterFusion}:  Non-Destructive Task Composition for Transfer Learning},
 url       = {https://arxiv.org/pdf/2005.00247.pdf},
year = {2020}
}
Architecture
@misc{pfeiffer2020adapterfusion,
  title={AdapterFusion: Non-Destructive Task Composition for Transfer Learning},
  author={Jonas Pfeiffer and Aishwarya Kamath and Andreas Rücklé and Kyunghyun Cho and Iryna Gurevych},
  year={2020},
  eprint={2005.00247},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Task
@inproceedings{marelli-etal-2014-sick,
    title = "A {SICK} cure for the evaluation of compositional distributional semantic models",
    author = "Marelli, Marco  and
      Menini, Stefano  and
      Baroni, Marco  and
      Bentivogli, Luisa  and
      Bernardi, Raffaella  and
      Zamparelli, Roberto",
    booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}-2014)",
    month = may,
    year = "2014",
    address = "Reykjavik, Iceland",
    publisher = "European Languages Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf",
    pages = "216--223",
}