Edit on GitHub

model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
config = AdapterConfig.load("houlsby")
model.load_adapter("qa/squad1@ukp", config=config)

Description

Adapter for bert-base in Houlsby architecture trained on the SQuAD 1.1 dataset for 15 epochs with early stopping and a learning rate of 3e-4.

Properties

Pre-trained model
bert-base-uncased
Adapter type
Prediction Head
  Yes
Task
Question Answering
Dataset

Architecture

Name
houlsby
Non-linearity
swish
Reduction factor
16
{
  "ln_after": false,
  "ln_before": false,
  "mh_adapter": true,
  "output_adapter": true,
  "adapter_residual_before_ln": false,
  "non_linearity": null,
  "original_ln_after": true,
  "original_ln_before": false,
  "reduction_factor": null,
  "residual_before_ln": true
}

Author

  Name
Clifton Poth
  GitHub
  Twitter

Versions

Identifier Comment Score Download
1 DEFAULT 87.75

Citations

Architecture
@misc{houlsby2019parameterefficient,
  title={Parameter-Efficient Transfer Learning for NLP},
  author={Neil Houlsby and Andrei Giurgiu and Stanislaw Jastrzebski and Bruna Morrone and Quentin de Laroussilhe and Andrea Gesmundo and Mona Attariyan and Sylvain Gelly},
  year={2019},
  eprint={1902.00751},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
}
Task
@misc{rajpurkar2016squad,
  title={SQuAD: 100,000+ Questions for Machine Comprehension of Text},
  author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},
  year={2016},
  eprint={1606.05250},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}