model = AutoAdapterModel.from_pretrained("distilbert-base-uncased")
config = AdapterConfig.load("pfeiffer")
model.load_adapter("rc/race@ukp", config=config)
{
"ln_after": false,
"ln_before": false,
"mh_adapter": false,
"output_adapter": true,
"adapter_residual_before_ln": false,
"non_linearity": null,
"original_ln_after": true,
"original_ln_before": true,
"reduction_factor": null,
"residual_before_ln": true
}
| Identifier | Comment | Score | Download |
|---|---|---|---|
| 1 DEFAULT |
@misc{pfeiffer2020adapterfusion,
title={AdapterFusion: Non-Destructive Task Composition for Transfer Learning},
author={Jonas Pfeiffer and Aishwarya Kamath and Andreas Rücklé and Kyunghyun Cho and Iryna Gurevych},
year={2020},
eprint={2005.00247},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{lai2017large,
title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},
journal={arXiv preprint arXiv:1704.04683},
year={2017}
}