Edit on GitHub

model = AutoAdapterModel.from_pretrained("distilbert-base-uncased")
config = AdapterConfig.load("pfeiffer")
model.load_adapter("rc/race@ukp", config=config)

Description

Adapter for distilbert-base-uncased in Pfeiffer architecture trained on the RACE dataset for 15 epochs with early stopping and a learning rate of 1e-4.

Properties

Pre-trained model
distilbert-base-uncased
Adapter type
Prediction Head
  Yes
Task
Machine Reading Comprehension
Dataset

Architecture

Name
pfeiffer
Non-linearity
relu
Reduction factor
16
{
  "ln_after": false,
  "ln_before": false,
  "mh_adapter": false,
  "output_adapter": true,
  "adapter_residual_before_ln": false,
  "non_linearity": null,
  "original_ln_after": true,
  "original_ln_before": true,
  "reduction_factor": null,
  "residual_before_ln": true
}

Author

  Name
Clifton Poth
  GitHub
  Twitter

Versions

Identifier Comment Score Download
1 DEFAULT

Citations

Architecture
@misc{pfeiffer2020adapterfusion,
  title={AdapterFusion: Non-Destructive Task Composition for Transfer Learning},
  author={Jonas Pfeiffer and Aishwarya Kamath and Andreas Rücklé and Kyunghyun Cho and Iryna Gurevych},
  year={2020},
  eprint={2005.00247},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Task
@article{lai2017large,
    title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
    author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},
    journal={arXiv preprint arXiv:1704.04683},  
    year={2017}
}