Edit on GitHub

model = AutoAdapterModel.from_pretrained("distilbert-base-uncased")
config = AdapterConfig.load("pfeiffer")
model.load_adapter("sentiment/imdb@ukp", config=config)

Description

Adapter for distilbert-base-uncased in Pfeiffer architecture trained on the IMDB dataset for 15 epochs with early stopping and a learning rate of 1e-4.

Properties

Pre-trained model
distilbert-base-uncased
Adapter type
Prediction Head
  Yes
Task
Sentiment Analysis
Dataset

Architecture

Name
pfeiffer
Non-linearity
relu
Reduction factor
16
{
  "ln_after": false,
  "ln_before": false,
  "mh_adapter": false,
  "output_adapter": true,
  "adapter_residual_before_ln": false,
  "non_linearity": null,
  "original_ln_after": true,
  "original_ln_before": true,
  "reduction_factor": null,
  "residual_before_ln": true
}

Author

  Name
Clifton Poth
  GitHub
  Twitter

Versions

Identifier Comment Score Download
1 DEFAULT

Citations

Architecture
@misc{pfeiffer2020adapterfusion,
  title={AdapterFusion: Non-Destructive Task Composition for Transfer Learning},
  author={Jonas Pfeiffer and Aishwarya Kamath and Andreas Rücklé and Kyunghyun Cho and Iryna Gurevych},
  year={2020},
  eprint={2005.00247},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Task
@inproceedings{Maas11IMDB,
  author    = {Andrew L. Maas and
               Raymond E. Daly and
               Peter T. Pham and
               Dan Huang and
               Andrew Y. Ng and
               Christopher Potts},
  title     = {Learning Word Vectors for Sentiment Analysis},
  booktitle = {The 49th Annual Meeting of the Association for Computational Linguistics:
               Human Language Technologies, Proceedings of the Conference, 19-24
               June, 2011, Portland, Oregon, {USA}},
  pages     = {142--150},
  year      = {2011},
  url       = {https://www.aclweb.org/anthology/P11-1015/},
}