model = AutoAdapterModel.from_pretrained("facebook/bart-large") config = AdapterConfig.load("houlsby", non_linearity="swish", reduction_factor=2) model.load_adapter("sum/cnn_dailymail@ukp", config=config)
{ "ln_after": false, "ln_before": false, "mh_adapter": true, "output_adapter": true, "adapter_residual_before_ln": false, "non_linearity": "swish", "original_ln_after": true, "original_ln_before": false, "reduction_factor": 2, "residual_before_ln": true }
Identifier | Comment | Score | Download |
---|---|---|---|
1 DEFAULT | 20.51 |
@misc{houlsby2019parameterefficient, title={Parameter-Efficient Transfer Learning for NLP}, author={Neil Houlsby and Andrei Giurgiu and Stanislaw Jastrzebski and Bruna Morrone and Quentin de Laroussilhe and Andrea Gesmundo and Mona Attariyan and Sylvain Gelly}, year={2019}, eprint={1902.00751}, archivePrefix={arXiv}, primaryClass={cs.LG} }
@inproceedings{Hermann2015TeachingMT, title={Teaching Machines to Read and Comprehend}, author={K. Hermann and Tom{\'a}s Kocisk{\'y} and Edward Grefenstette and Lasse Espeholt and W. Kay and Mustafa Suleyman and P. Blunsom}, booktitle={NIPS}, year={2015} }