model = AutoAdapterModel.from_pretrained("facebook/bart-large")
config = AdapterConfig.load("houlsby", non_linearity="swish", reduction_factor=2)
model.load_adapter("sum/cnn_dailymail@ukp", config=config)
{
"ln_after": false,
"ln_before": false,
"mh_adapter": true,
"output_adapter": true,
"adapter_residual_before_ln": false,
"non_linearity": "swish",
"original_ln_after": true,
"original_ln_before": false,
"reduction_factor": 2,
"residual_before_ln": true
}
| Identifier | Comment | Score | Download |
|---|---|---|---|
| 1 DEFAULT | 20.51 |
@misc{houlsby2019parameterefficient,
title={Parameter-Efficient Transfer Learning for NLP},
author={Neil Houlsby and Andrei Giurgiu and Stanislaw Jastrzebski and Bruna Morrone and Quentin de Laroussilhe and Andrea Gesmundo and Mona Attariyan and Sylvain Gelly},
year={2019},
eprint={1902.00751},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@inproceedings{Hermann2015TeachingMT,
title={Teaching Machines to Read and Comprehend},
author={K. Hermann and Tom{\'a}s Kocisk{\'y} and Edward Grefenstette and Lasse Espeholt and W. Kay and Mustafa Suleyman and P. Blunsom},
booktitle={NIPS},
year={2015}
}