model = AutoAdapterModel.from_pretrained("facebook/bart-large") config = AdapterConfig.load("pfeiffer", non_linearity="relu", reduction_factor=2) model.load_adapter("sum/xsum@ukp", config=config)
{ "ln_after": false, "ln_before": false, "mh_adapter": false, "output_adapter": true, "adapter_residual_before_ln": false, "non_linearity": "relu", "original_ln_after": true, "original_ln_before": true, "reduction_factor": 2, "residual_before_ln": true }
Identifier | Comment | Score | Download |
---|---|---|---|
1 DEFAULT | 20.56 |
@misc{pfeiffer2020adapterfusion, title={AdapterFusion: Non-Destructive Task Composition for Transfer Learning}, author={Jonas Pfeiffer and Aishwarya Kamath and Andreas Rücklé and Kyunghyun Cho and Iryna Gurevych}, year={2020}, eprint={2005.00247}, archivePrefix={arXiv}, primaryClass={cs.CL} }
@InProceedings{xsum-emnlp, author = "Shashi Narayan and Shay B. Cohen and Mirella Lapata", title = "Don't Give Me the Details, Just the Summary! {T}opic-Aware Convolutional Neural Networks for Extreme Summarization", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing ", year = "2018", address = "Brussels, Belgium", }