model = AutoAdapterModel.from_pretrained("facebook/mbart-large-cc25")
config = AdapterConfig.load("pfeiffer", non_linearity="relu", reduction_factor=2)
model.load_adapter("mt/wmt16_en_ro@ukp", config=config)
{
"ln_after": false,
"ln_before": false,
"mh_adapter": false,
"output_adapter": true,
"adapter_residual_before_ln": false,
"non_linearity": "relu",
"original_ln_after": true,
"original_ln_before": true,
"reduction_factor": 2,
"residual_before_ln": true
}
| Identifier | Comment | Score | Download |
|---|---|---|---|
| 1 DEFAULT | 36.3 |
@misc{pfeiffer2020adapterfusion,
title={AdapterFusion: Non-Destructive Task Composition for Transfer Learning},
author={Jonas Pfeiffer and Aishwarya Kamath and Andreas Rücklé and Kyunghyun Cho and Iryna Gurevych},
year={2020},
eprint={2005.00247},
archivePrefix={arXiv},
primaryClass={cs.CL}
}