model = AutoAdapterModel.from_pretrained("gpt2")
config = AdapterConfig.load("houlsby", non_linearity="swish", reduction_factor=16)
model.load_adapter("sts/qqp@ukp", config=config)
{
"ln_after": false,
"ln_before": false,
"mh_adapter": true,
"output_adapter": true,
"adapter_residual_before_ln": false,
"non_linearity": "swish",
"original_ln_after": true,
"original_ln_before": false,
"reduction_factor": 16,
"residual_before_ln": true
}
| Identifier | Comment | Score | Download |
|---|---|---|---|
| 1 DEFAULT |
@misc{houlsby2019parameterefficient,
title={Parameter-Efficient Transfer Learning for NLP},
author={Neil Houlsby and Andrei Giurgiu and Stanislaw Jastrzebski and Bruna Morrone and Quentin de Laroussilhe and Andrea Gesmundo and Mona Attariyan and Sylvain Gelly},
year={2019},
eprint={1902.00751},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{chen2018quora,
title={Quora question pairs},
author={Chen, Zihan and Zhang, Hongbo and Zhang, Xiaoji and Zhao, Leqi},
year={2018},
publisher={Quora}
}