Edit on GitHub

model = AutoAdapterModel.from_pretrained("roberta-large")
config = AdapterConfig.load("pfeiffer")
model.load_adapter("nli/multinli@ukp", config=config)

Description

Adapter (with head) trained using the `run_glue.py` script with an extension that retains the best checkpoint (out of 10 epochs).

Properties

Pre-trained model
roberta-large
Adapter type
Prediction Head
  Yes
Task
Natural Language Inference
Dataset

Architecture

Name
pfeiffer
Non-linearity
relu
Reduction factor
16
{
  "ln_after": false,
  "ln_before": false,
  "mh_adapter": false,
  "output_adapter": true,
  "adapter_residual_before_ln": false,
  "non_linearity": null,
  "original_ln_after": true,
  "original_ln_before": true,
  "reduction_factor": null,
  "residual_before_ln": true
}

Author

  Name
Andreas Rücklé
  GitHub
  Twitter

Versions

Identifier Comment Score Download
1 DEFAULT Achieves 90.42 Accuracy on the MNLI devset

Citations

Adapter
@article{pfeiffer2020AdapterHub,
    title={AdapterHub: A Framework for Adapting Transformers},
    author={Jonas Pfeiffer,
            Andreas R\"uckl\'{e},
            Clifton Poth,
            Aishwarya Kamath,
            Ivan Vuli\'{c},
            Sebastian Ruder,
            Kyunghyun Cho,
            Iryna Gurevych},
    journal={ArXiv},
    year={2020}
}
Architecture
@misc{pfeiffer2020adapterfusion,
  title={AdapterFusion: Non-Destructive Task Composition for Transfer Learning},
  author={Jonas Pfeiffer and Aishwarya Kamath and Andreas Rücklé and Kyunghyun Cho and Iryna Gurevych},
  year={2020},
  eprint={2005.00247},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Task
@misc{williams2017broadcoverage,
  title={A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference},
  author={Adina Williams and Nikita Nangia and Samuel R. Bowman},
  year={2017},
  eprint={1704.05426},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}