Edit on GitHub

model = AutoAdapterModel.from_pretrained("bert-base-uncased")
config = AdapterConfig.load("pfeiffer")
model.load_adapter("pos/ldc2012t13@vblagoje", config=config)

Description

Pfeiffer Adapter trained on English Dependency Treebank (LDC2012T13) with F1 score of 95.6. See example notebook at https://bit.ly/3klcxfL

Properties

Pre-trained model
bert-base-uncased
Adapter type
Prediction Head
  Yes
Task
Part-Of-Speech Tagging
Dataset

Architecture

Name
pfeiffer
Non-linearity
relu
Reduction factor
16
{
  "ln_after": false,
  "ln_before": false,
  "mh_adapter": false,
  "output_adapter": true,
  "adapter_residual_before_ln": false,
  "non_linearity": null,
  "original_ln_after": true,
  "original_ln_before": true,
  "reduction_factor": null,
  "residual_before_ln": true
}

Author

  Name
Vladimir Blagojevic
  E-Mail
  GitHub
  Twitter

Versions

Identifier Comment Score Download
1 DEFAULT

Citations

Architecture
@misc{pfeiffer2020adapterfusion,
  title={AdapterFusion: Non-Destructive Task Composition for Transfer Learning},
  author={Jonas Pfeiffer and Aishwarya Kamath and Andreas Rücklé and Kyunghyun Cho and Iryna Gurevych},
  year={2020},
  eprint={2005.00247},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Task
@inproceedings{silveira14gold,
year = {2014}, author = {Natalia Silveira and Timothy Dozat and Marie-Catherine de Marneffe and Samuel Bowman and Miriam Connor and John Bauer and Christopher D. Manning},
title = {A Gold Standard Dependency Corpus for {E}nglish}, 
booktitle = {Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014)}}